A Simple Approach for the Auralization of Moving

Inter-Noise 2015

The National Transportation Systems Center

U.S. Department of Transportation

John A. Volpe National Transportation Systems Center

Ð

Background

Needs

- Sound Signal Development Human Response Testing
- Soundscape Simulation Community Outreach
- Software to Auralize Moving Sources
 - Commercial / Proprietary
 - Source / Environment Specific
 - Optimized for Speed
- Method Requirements
 - Signal and Processing Agnostic
 - Modifiable / Extensible
 - Open / Transparent Implementation
 - Near Real-time
 - Batch Processing

In Situ Testing: Time, Expense, Accuracy

Assumptions

- Point Source in Far Field
- Ray Acoustics
- Homogeneous Atmosphere
- Free Field Propagation
 - No reflections, edge diffractions, etc
 - Add hard ground using image sources
- □ Receiver & Source:
 - Translate in X, Y, Z
 - Rotate horizontally (azimuth) & vertically (elevation)
- Receiver
 - Translation removed after source defined

Implementation

- Matlab Main Function
- Sub-routines
 - Allow Switching Methodologies
 - May Require Additional Assumptions

□ Sub-routines:

- 1. Define Receiver
- 2. Define Source
- 3. Define Signal at Source
- 4. Determine Time Delay for Propagation
- 5. Determine Attenuation (Divergence, Atmospheric Absorption)
- 6. Adjust for Signal Directivity
- 7. Adjust for Receiver Head Related Transfer Functions (HRTFs)
- 8. Output Signal

Defining Receiver and Source

- Flat Earth X, Y, Z (RHR)
- Horizontal (Azimuth) Angle
- Vertical (Elevation) Angle
- Receiver Defined First
- Receiver Translation Removed during Source Definition
 - Subtract Receiver Translation Vector from Source Translation Vector
 - Receiver and Source Angles Computed after Receiver Translation Removed
- Final Distances and Angles
 Defined for Fix Reference
 Frame Centered on Receiver

Defining Signal

- Signal can be Defined Using:
 - Stationary time signal
 - Parametric formulae
 - Sinusoids and band-limited noise
- Propagation from Source to Receiver:
 - Time Delay \rightarrow Produces Doppler Shift

- Interpolation:
 - **Nearest Neighbor**
 - Linear
 - Spline
 - Lagrange

Free-field Attenuation

- Divergence 6 dB / doubling
- □ Atmospheric Absorption: ISO 9613-1
 - Function of Frequency and Distance
 - Frequency Associated w/. Time Interval
 - Distance Associated w/. Single Sample
 - Approach:
 - Develop Filters for Each 3 dB of Overall Attenuation
 - Linear Interpolation: Weighted average of two nearest distances for each sample

Frequency (Hz)	Attenuation (dB/m)	Frequency (Hz)	Attenuation (dB/m)
50	7.81E-05	800	3.91E-03
63	1.22E-04	1000	4.66E-03
	1.94E-04	1250	5.71E-03
100	2.94E-04	1600	7.45E-03
125	4.40E-04	2000	9.89E-03
160	6.71E-04	2500	1.36E-02
200	9.54E-04	3150	1.97E-02
250	1.31E-03	4000	2.97E-02
	1.74E-03	5000	4.42E-02
400	2.24E-03	6300	6.76E-02
	2.73E-03	8000	1.05E-01
630	3.27F-03	10000	1.59F-01

$$p(d_{i}) = \frac{1}{2}p(d_{i}, h_{nearer})\frac{d_{farther} - d_{i}}{d_{farther} - d_{nearer}} + \frac{1}{2}p(d_{i}, h_{farther})\frac{d_{i} - d_{nearer}}{d_{farther} - d_{nearer}}$$

$$p(d_i, h_{nearer}) = (p * h_{nearer})(t)|_{t \to d_i}$$

Adjusting for Directivity and HRTFs

Measured HRTFs

- Center for Image Processing and Integrated Computing (CIPIC) at U.C. Davis
- Azimuth Angles: +/- 80, 65, 55, 45, 40, 35, 30, 25, 20, 15, 10, 5, 0 deg
- Elevation Angles: : -45 to 230.625 deg (5.625 degree increments)
- Angles Relative to Head Orientation
- Directivity
 - Uses Monopole unless directivity provided
 - Same format as for HRTFs
 - Angles based on Fixed Reference Frame (Independent of Head Rotation)

Interpolation

- Similar to that used for Atmospheric Absorption
- Except nearest neighbors determined for azimuth and elevation: Bilinear Interpolation

Sample Results

Spectrogram of 440 Hz pure tone source signal passing by receiver at 8.33 m/s with perpendicular distance of 10 m.

Sample Results

Spectrogram of 440 Hz pure tone source signal passing by receiver at 8.33 m/s with a perpendicular distance of 10 m. Head-

Next Steps

- Extend Functionality to Include Reflections (e.g. Ground Effects) and Edge Diffractions (e.g. Shielding)
- Improve Interpolation Functions
- Add HRTFs with Higher Spatial Resolution
- Add Dipole, Cardioid, etc. Directivity Patterns
- Add other Atmospheric Absorption Standards
- Develop Library of Standard Sound Sources
- Develop Library of Standard Source Trajectories
- Add Metric Computations and Calibrations for Signal at Source and at Receiver

Questions / Comments?

Aaron.Hastings@dot.gov

